Appendix 25-8:

Highway Capacity Software Level of Service Output

	HCS7 Two-La	ne Highway Ro	eport					
Project Information								
Analyst	ВН	Date		9/3/2020				
Agency	PDE	Analysis Year		2020				
Jurisdiction	NYSDOT	Time Period Analy	/zed	Existing				
Project Description	Town Line Road (County Route 129)	y Unit		United States Customary				
	Segment 1							
Vehicle Inputs								
Segment Type	Passing Zone	Length, ft		5280				
Lane Width, ft	10	Shoulder Width, f	t	0				
Speed Limit, mi/h	55	Access Point Dens	sity, pts/mi	3.0				
Demand and Capacity								
Directional Demand Flow Rate, veh/h	11	Opposing Deman	d Flow Rate, veh/h	40				
Peak Hour Factor	0.90	Total Trucks, %		4.64				
Segment Capacity, veh/h	1700	Demand/Capacity	/ (D/C)	0.01				
Intermediate Results								
Segment Vertical Class	1	Free-Flow Speed,	mi/h	56.4				
Speed Slope Coefficient	3.28090	Speed Power Coe	fficient	0.60875				
PF Slope Coefficient	-1.16378	PF Power Coeffici	ent	0.81874				
In Passing Lane Effective Length?	No	Total Segment De	ensity, veh/mi/ln	0.0				
%Improved % Followers	0.0	% Improved Avg :	Speed	0.0				
Subsegment Data								
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h				
1 Tangent	5280	-	-	56.4				
Vehicle Results								
Average Speed, mi/h	56.4	Percent Followers	, %	2.9				
Segment Travel Time, minutes	1.06	Followers Density	, followers/mi/ln	0.0				
Vehicle LOS	A							

HCS TM Two-Lane Version 7.8

Generated: 09/03/2020 13:31:12 A - Townline Road (County Route 129).xuf

BH PDE NYSDOT		Date			
PDE		Date			
				9/3/2020	
NYSDOT		Analysis Year		2020	
		Time Period Analy	zed	Existing	
Fuller Road		Unit		United States Customary	
Se	egm	ent 1			
Passing Zone	П	Length, ft		5280	
11		Shoulder Width, ft	t	0	
55		Access Point Dens	ity, pts/mi	3.0	
Demand and Capacity					
23	П	Opposing Demand Flow Rate, veh/h		37	
0.90		Total Trucks, %		7.51	
1700		Demand/Capacity (D/C)		0.01	
1	П	Free-Flow Speed,	mi/h	56.9	
3.30544		Speed Power Coefficient		0.61140	
-1.15949		PF Power Coefficient		0.82142	
No		Total Segment De	nsity, veh/mi/ln	0.0	
0.0		% Improved Avg S	Speed	0.0	
Length, ft	Radio	us, ft	Superelevation, %	Average Speed, mi/h	
5280	-		-	56.9	
56.9		Percent Followers,	%	5.2	
1.05		Followers Density, followers/mi/ln		0.0	
А					
	Fuller Road Second Sec	Fuller Road Segm Passing Zone 11 55 23 0.90 1700 1 3.30544 -1.15949 No 0.0 Length, ft Radi 5280 - 56.9 1.05	NYSDOT Time Period Analy Fuller Road Unit Segment 1 Passing Zone Length, ft 11 Shoulder Width, ft 55 Access Point Dens 23 Opposing Demand 0.90 Total Trucks, % 1700 Demand/Capacity 1 Free-Flow Speed, 3.30544 Speed Power Coefficient No Total Segment Dens No Total Segment Dens 0.0 % Improved Avg Segment Dens Length, ft Radius, ft 5280 -	NYSDOT Time Period Analyzed Fuller Road Unit Segment 1 Passing Zone Length, ft 11 Shoulder Width, ft 55 Access Point Density, pts/mi 23 Opposing Demand Flow Rate, veh/h 0.90 Total Trucks, % 1700 Demand/Capacity (D/C) 1 Free-Flow Speed, mi/h 3.30544 Speed Power Coefficient -1.15949 PF Power Coefficient No Total Segment Density, veh/mi/ln 0.0 % Improved Avg Speed Length, ft Radius, ft Superelevation, % 5280	

HCSTM Two-Lane Version 7.8

Generated: 09/03/2020 13:37:08

B - Fuller Road.xuf

		HCS7 Two	-Lane	Highway Re	eport	
Pro	oject Information					
Anal	lyst	ВН		Date		9/3/2020
Age	ncy	PDE		Analysis Year		2020
Juris	diction	NYSDOT		Time Period Analy	/zed	Existing
Proj	ect Description	Lake Road	Lake Road			United States Customary
			Segn	ment 1		
Vel	hicle Inputs					
Segi	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	10		Shoulder Width, f	t	0
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	14		Opposing Deman	d Flow Rate, veh/h	7
Peak	K Hour Factor	0.90		Total Trucks, %		4.64
Segi	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.01
Int	ermediate Results					
Segi	ment Vertical Class	1		Free-Flow Speed,	mi/h	56.4
Spe	ed Slope Coefficient	3.24210		Speed Power Coefficient		0.64724
PF S	lope Coefficient	-1.12992		PF Power Coefficient		0.82885
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	0.0
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	56.4
Vel	hicle Results					
Aver	rage Speed, mi/h	56.4		Percent Followers	, %	3.3
Segi	ment Travel Time, minutes	1.06		Followers Density,	, followers/mi/ln	0.0
Vehi	icle LOS	А				
Consider @ 2020 Heileriche All Bieber Bernert						C

HCSTM Two-Lane Version 7.8 C - Lake Road.xuf Generated: 09/03/2020 13:40:02

		HCS7 Two-I	Lane	Highway Re	eport	
Pro	ject Information					
Anal	yst	ВН		Date		9/3/2020
Age	ncy	PDE		Analysis Year		2020
Juris	diction	NYSDOT		Time Period Analy	/zed	Existing
Proje	ect Description	NY-38		Unit		United States Customary
		,	Segn	nent 1		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	Width, ft	11		Shoulder Width, f	t	3
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	66		Opposing Deman	d Flow Rate, veh/h	46
Peak	Hour Factor	0.90		Total Trucks, %		6.68
Segr	nent Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.04
Int	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	59.0
Spe	ed Slope Coefficient	3.42796		Speed Power Coe	fficient	0.60459
PF S	lope Coefficient	-1.15788		PF Power Coefficie	ent	0.82591
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.1
%lm	proved % Followers	0.0		% Improved Avg	Speed	0.0
Sul	osegment Data					
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	T-		-	59.0
Vel	nicle Results					
Aver	age Speed, mi/h	59.0		Percent Followers	, %	11.5
Segr	ment Travel Time, minutes	1.02		Followers Density	, followers/mi/ln	0.1
Vehi	cle LOS	А				

HCS TM Two-Lane Version 7.8 D - NY-38.xuf

		HCS7 Two	o-Lane	Highway R	eport	
Pro	ject Information					
Anal	yst	ВН		Date		9/3/2020
Ageı	ncy	PDE		Analysis Year		2020
Juris	diction	NYSDOT		Time Period Analy	yzed	Existing
Proje	ect Description	NY-34		Unit		United States Customary
			Segr	nent 1		
Veł	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	11		Shoulder Width, f	ft	6
Spe	ed Limit, mi/h	55		Access Point Den	sity, pts/mi	3.0
Dei	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	204		Opposing Demar	nd Flow Rate, veh/h	137
Peak	Hour Factor	0.90		Total Trucks, %		10.80
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.12
Int	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	61.0
Spee	ed Slope Coefficient	3.58556		Speed Power Coefficient		0.55946
PF S	lope Coefficient	-1.18813		PF Power Coefficient		0.82009
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.9
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Suk	osegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	60.0
Veł	nicle Results				•	
Aver	rage Speed, mi/h	60.0		Percent Followers	5, %	27.6
Segr	ment Travel Time, minutes	1.00	Followers Density, followers/mi/ln		0.9	
 Vehi	cle LOS	А				

E - NY-34.xuf

ВН		Date		9/3/2020
PDE	PDE			2020
NYSDOT		Time Period Analy	zed	Existing
Ditmar Road		Unit		United States Customary
S	egn	nent 1		
Passing Zone		Length, ft		5280
10		Shoulder Width, ft	t	0
55		Access Point Dens	ity, pts/mi	3.0
-				
58		Opposing Deman	d Flow Rate, veh/h	39
0.90		Total Trucks, %		5.20
1700		Demand/Capacity (D/C)		0.03
1		Free-Flow Speed,	mi/h	56.4
3.27897		Speed Power Coefficient		0.60962
-1.16300		PF Power Coefficient		0.81900
No		Total Segment De	nsity, veh/mi/ln	0.1
0.0		% Improved Avg Speed		0.0
Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h
5280	-		-	56.4
•				
56.4		Percent Followers,	%	10.6
1.06		Followers Density, followers/mi/ln		0.1
А				
	PDE NYSDOT Ditmar Road Passing Zone 10 55 58 0.90 1700 1 3.27897 -1.16300 No 0.0 Length, ft 5280 56.4 1.06	PDE NYSDOT Ditmar Road Segn Passing Zone 10 55 58 0.90 1700 11 3.27897 -1.16300 No 0.0 Length, ft Rac 5280 - 56.4 1.06	PDE Analysis Year NYSDOT Time Period Analy Ditmar Road Unit Segment 1 Passing Zone Length, ft 10 Shoulder Width, ft 55 Access Point Dens 58 Opposing Demand 0.90 Total Trucks, % 1700 Demand/Capacity 1 Free-Flow Speed, 3.27897 Speed Power Coefficie No Total Segment De 0.0 % Improved Avg S Length, ft Radius, ft 5280 - 56.4 Percent Followers, 1.06 Followers Density,	PDE Analysis Year NYSDOT Time Period Analyzed Ditmar Road Unit Segment 1 Passing Zone Length, ft 10 Shoulder Width, ft 55 Access Point Density, pts/mi 58 Opposing Demand Flow Rate, veh/h 0.90 Total Trucks, % 1700 Demand/Capacity (D/C) 1 Free-Flow Speed, mi/h 3.27897 Speed Power Coefficient -1.16300 PF Power Coefficient No Total Segment Density, veh/mi/ln 0.0 % Improved Avg Speed Length, ft Radius, ft Superelevation, % 5280 - 56.4 Percent Followers, % 1.06 Followers Density, followers/mi/ln

HCSTM Two-Lane Version 7.8 F - Ditmar Rd.xuf Generated: 02/23/2021 17:53:12

		HCS7 Two-L	ane	Highway Re	eport	
Pro	ject Information					
Anal	yst	ВН		Date		9/3/2020
Ager	ncy	PDE		Analysis Year		2020
Juris	diction	NYSDOT		Time Period Analy	/zed	Existing
Proje	ect Description	Conger Rd		Unit		United States Customary
		9	Segn	nent 1		
Veł	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	Width, ft	10		Shoulder Width, f	t	0
Spee	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
Dei	mand and Capacity	·				
Dire	ctional Demand Flow Rate, veh/h	2		Opposing Deman	d Flow Rate, veh/h	1
Peak	Hour Factor	0.90		Total Trucks, %		5.20
Segr	nent Capacity, veh/h	1700		Demand/Capacity	' (D/C)	0.00
Inte	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	56.4
Spee	ed Slope Coefficient	3.22525		Speed Power Coe	fficient	0.66392
PF SI	lope Coefficient	-1.11545		PF Power Coefficie	ent	0.83331
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	0.0
%lm	proved % Followers	0.0		% Improved Avg	Speed	0.0
Suk	osegment Data	·				
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	T-		-	56.4
Vel	nicle Results					
Aver	age Speed, mi/h	56.4		Percent Followers	, %	0.7
Segr	ment Travel Time, minutes	1.06		Followers Density	, followers/mi/ln	0.0
Vehicle LOS A						

HCSTM Two-Lane Version 7.8 G - Conger Rd.xuf

		HCS7 Two-La	ane	Highway Re	eport	
Pro	pject Information					
Ana	lyst	ВН		Date		9/3/2020
Age	ncy	PDE	PDE			2020
Juris	diction	NYSDOT		Time Period Analy	zed	Existing
Proj	ect Description	Bell Rd		Unit		United States Customary
		S	egn	nent 1		
Vel	hicle Inputs					
Segi	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	9		Shoulder Width, f	t	0
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	3		Opposing Demand Flow Rate, veh/h		2
Peak	k Hour Factor	0.90		Total Trucks, %		5.20
Segi	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.00
Int	ermediate Results					
Segi	ment Vertical Class	1		Free-Flow Speed,	mi/h	55.8
Spe	ed Slope Coefficient	3.19726		Speed Power Coefficient		0.65910
PF S	lope Coefficient	-1.12135		PF Power Coefficient		0.83014
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	0.0
%lm	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	1-		-	55.8
Vel	hicle Results					
Avei	rage Speed, mi/h	55.8		Percent Followers,	, %	1.0
Segi	ment Travel Time, minutes	1.08		Followers Density,	followers/mi/ln	0.0
Vehi	icle LOS	А				

HCSTM Two-Lane Version 7.8 H - Bell Rd.xuf Generated: 02/23/2021 17:55:34

		HCS7 Two-L	_ane	Highway Re	eport	
Pro	oject Information					
Ana	lyst	ВН		Date		9/3/2020
Age	ncy	PDE		Analysis Year		2020
Juris	sdiction	NYSDOT		Time Period Analy	/zed	Existing
Proj	ect Description	Follett Rd		Unit		United States Customary
			Segn	ment 1		
Vel	hicle Inputs					
Seg	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	9		Shoulder Width, f	t	0
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity	·				•
Dire	ctional Demand Flow Rate, veh/h	12		Opposing Deman	d Flow Rate, veh/h	8
Peal	k Hour Factor	0.90		Total Trucks, %		5.20
Seg	ment Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.01
Int	ermediate Results					
Seg	ment Vertical Class	1		Free-Flow Speed,	mi/h	55.8
Spe	ed Slope Coefficient	3.21071		Speed Power Coefficient		0.64502
PF S	lope Coefficient	-1.13361		PF Power Coefficient		0.82642
In P	assing Lane Effective Length?	No		Total Segment De	ensity, veh/mi/ln	0.0
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Su	bsegment Data	·				
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	55.8
Vel	hicle Results					
Ave	rage Speed, mi/h	55.8		Percent Followers	, %	2.9
Seg	ment Travel Time, minutes	1.08		Followers Density	, followers/mi/ln	0.0
Veh	icle LOS	А				
	ight © 2021 University of Florida, All Pights			and Version 7.8		Ganaratad: 02/23/2021 17:56:20

Copyright © 2021 University of Florida. All Rights Reserved. HCS TM Two-Lane Version 7.8

I - Follett Rd.xuf

Generated: 02/23/2021 17:56:29

	HCS7 Two-La	ne	Highway Re	eport				
Project Information	Project Information							
Analyst	вн		Date		9/3/2020			
Agency	PDE		Analysis Year		2020			
Jurisdiction	NYSDOT		Time Period Analy	zed	Existing			
Project Description	Weatherby Rd		Unit		United States Customary			
Segment 1								
Vehicle Inputs								
Segment Type	Passing Zone		Length, ft		5280			
Lane Width, ft	9		Shoulder Width, ft	ī	0			
Speed Limit, mi/h	55		Access Point Dens	ity, pts/mi	3.0			
Demand and Capacity								
Directional Demand Flow Rate, veh/h	6		Opposing Demand Flow Rate, veh/h		3			
Peak Hour Factor	0.90		Total Trucks, %		5.20			
Segment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.00			
Intermediate Results								
Segment Vertical Class	1		Free-Flow Speed,	mi/h	55.8			
Speed Slope Coefficient	3.20073		Speed Power Coefficient		0.65542			
PF Slope Coefficient	-1.12454		PF Power Coefficient		0.82917			
In Passing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.0			
%Improved % Followers	0.0		% Improved Avg Speed		0.0			
Subsegment Data								
# Segment Type	Length, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h			
1 Tangent	5280	-		-	55.8			
Vehicle Results								
Average Speed, mi/h	55.8		Percent Followers,	%	1.5			
Segment Travel Time, minutes	1.08		Followers Density, followers/mi/ln		0.0			
Vehicle LOS A								

HCSTM Two-Lane Version 7.8

J - Weatherby Rd.xuf

Generated: 02/23/2021 17:57:36

		HCS7 Two	o-Lane	Highway Re	eport		
Pro	ject Information						
Anal	yst	ВН		Date		9/3/2020	
Ager	ncy	PDE		Analysis Year		2020	
Juris	diction	NYSDOT		Time Period Analy	/zed	Existing	
Proje	ect Description	White Rd		Unit		United States Customary	
			Segn	nent 1			
Vel	nicle Inputs						
Segr	ment Type	Passing Zone		Length, ft		5280	
Lane	· Width, ft	9		Shoulder Width, f	t	0	
Spee	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0	
Dei	mand and Capacity	•		•			
Dire	ctional Demand Flow Rate, veh/h	3		Opposing Deman	d Flow Rate, veh/h	2	
Peak	Hour Factor	0.90		Total Trucks, %		5.20	
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.00	
Inte	ermediate Results						
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	55.8	
Spee	ed Slope Coefficient	3.19726		Speed Power Coefficient		0.65910	
PF SI	lope Coefficient	-1.12135		PF Power Coefficient		0.83014	
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.0	
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0	
Suk	osegment Data						
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	5280	-		-	55.8	
Vel	nicle Results						
Aver	age Speed, mi/h	55.8		Percent Followers	, %	1.0	
Segr	ment Travel Time, minutes	1.08	1.08		, followers/mi/ln	0.0	
Vahi	cle LOS	Α					

HCSTM Two-Lane Version 7.8 K - White Rd.xuf

	HCS7 Two-La	ne Highv	vay Re	eport	
Project Information					
Analyst	вн	Date	Date		2/24/2021
Agency	PDE	Analysis `	Year		2022
Jurisdiction	NYSDOT	Time Per	iod Analy	zed	Proposed
Project Description	Town Line Road (Count Route 129)	y Unit			United States Customary
	Se	gment 1			
Vehicle Inputs					
Segment Type	Passing Zone	Length, f	t		5280
Lane Width, ft	10	Shoulder	Width, ft	:	0
Speed Limit, mi/h	55	Access Po	Access Point Density, pts/mi		3.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	11	Opposing	g Deman	d Flow Rate, veh/h	40
Peak Hour Factor	0.90	Total Truc	cks, %		4.64
Segment Capacity, veh/h	1700	Demand,	/Capacity	(D/C)	0.01
Intermediate Results					
Segment Vertical Class	1	Free-Flov	w Speed,	mi/h	56.4
Speed Slope Coefficient	3.28090	Speed Po	Speed Power Coefficient		0.60875
PF Slope Coefficient	-1.16378	PF Power	PF Power Coefficient		0.81874
In Passing Lane Effective Length?	No	Total Seg	Total Segment Density, veh/mi/ln		0.0
%Improved % Followers	0.0	% Improv	% Improved Avg Speed		0.0
Subsegment Data					
# Segment Type	Length, ft	Radius, ft		Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-		-	56.4
Vehicle Results					
Average Speed, mi/h	56.4	Percent F	ollowers,	%	2.9
Segment Travel Time, minutes	1.06	Followers	Followers Density, followers/mi/ln		0.0
Vehicle LOS	A				

HCS TM Two-Lane Version 7.8

Generated: 02/24/2021 09:42:27

A - Townline Road (County Route 129).xuf

		HCS7 Two-La	ane	Highway Ro	eport	
Pro	oject Information					
Ana	lyst	ВН		Date		2/24/2021
Age	ncy	PDE		Analysis Year		2022
Juris	sdiction	NYSDOT		Time Period Analy	/zed	Proposed
Proj	ect Description	Fuller Road		Unit		United States Customary
		S	egn	nent 1		
Vel	hicle Inputs					
Seg	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	11		Shoulder Width, f	t	0
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	23		Opposing Demand Flow Rate, veh/h		37
Peal	k Hour Factor	0.90		Total Trucks, %		7.51
Seg	ment Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.01
Int	ermediate Results					
Seg	ment Vertical Class	1			mi/h	56.9
Spe	ed Slope Coefficient	3.30544		Speed Power Coefficient		0.61140
PF S	Slope Coefficient	-1.15949		PF Power Coefficient		0.82142
In P	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.0
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	56.9
Vel	hicle Results					
Ave	rage Speed, mi/h	56.9	56.9		, %	5.2
Seg	ment Travel Time, minutes	1.05		Followers Density, followers/mi/ln		0.0
Veh	icle LOS	А				
	ight @ 2021 University of Florida, All Pights			ano Varcion 7.8		Generated: 02/24/2021 09:43:4

Copyright © 2021 University of Florida. All Rights Reserved. HCS TM Two-Lane Version 7.8

B - Fuller Road.xuf

Generated: 02/24/2021 09:43:48

	I.		
	_		
	Date		02/24/2021
	Analysis Year		2022
OOT	Time Period Analy:	zed	Proposed
Road	Unit		United States Customary
Segi	ment 1		
ng Zone	Length, ft		5280
	Shoulder Width, ft		0
	Access Point Dens	ity, pts/mi	3.0
	Opposing Demand	d Flow Rate, veh/h	24
	Total Trucks, %		8.51
	Demand/Capacity	(D/C)	0.02
	Free-Flow Speed, 1	mi/h	56.3
960	Speed Power Coefficient		0.62255
155	PF Power Coefficient		0.82256
	Total Segment Density, veh/mi/ln		0.0
	% Improved Avg Speed		0.0
th, ft Ra	dius, ft	Superelevation, %	Average Speed, mi/h
-		-	56.3
	Percent Followers, %		6.6
	Followers Density, followers/mi/ln		0.0
	•		
- t	155	Free-Flow Speed, r Free-Flow Speed, r Speed Power Coefficie Total Segment Der % Improved Avg S ch, ft Radius, ft - Percent Followers,	Demand/Capacity (D/C) Free-Flow Speed, mi/h Speed Power Coefficient PF Power Coefficient Total Segment Density, veh/mi/ln % Improved Avg Speed ch, ft Radius, ft Superelevation, % Percent Followers, %

HCSTM Two-Lane Version 7.8

Generated: 02/24/2021 09:45:34

C - Lake Road.xuf

		HCS7 Two	-Lane	Highway Re	eport	
Pro	ject Information					
Anal	yst	вн		Date		02/24/2021
Age	ncy	PDE		Analysis Year		2022
Juris	diction	NYSDOT		Time Period Analy	/zed	Proposed
Proje	ect Description	NY-38		Unit		United States Customary
			Segr	nent 1		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	11		Shoulder Width, f	t	3
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	294		Opposing Demand Flow Rate, veh/h		274
Peak	Hour Factor	0.90		Total Trucks, %		10.08
Segr	nent Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.17
Int	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed, mi/h		58.9
Spe	ed Slope Coefficient	3.52358		Speed Power Coefficient		0.52069
PF S	lope Coefficient	-1.23143		PF Power Coefficient		0.80315
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		1.9
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Sul	osegment Data					
#	Segment Type	Length, ft	Ra	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	57.4
Vel	nicle Results					
Aver	rage Speed, mi/h	57.4	57.4		, %	37.0
Segr	ment Travel Time, minutes	1.05	1.05		, followers/mi/ln	1.9
 Vehi	cle LOS	А				

HCSTM Two-Lane Version 7.8 D - NY-38.xuf

		HCS7 Two	o-Lane	Highway Re	eport	
Pro	ject Information					
Anal	yst	ВН		Date		02/24/2021
Age	ncy	PDE		Analysis Year		2022
Juris	diction	NYSDOT		Time Period Analy	/zed	Proposed
Proje	ect Description	NY-34		Unit		United States Customary
			Segr	ment 1		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	11		Shoulder Width, f	t	6
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	204		Opposing Demand Flow Rate, veh/h		137
Peak	Hour Factor	0.90		Total Trucks, %		10.80
Segr	ment Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.12
Int	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed, mi/h		61.0
Spe	ed Slope Coefficient	3.58556		Speed Power Coefficient		0.55946
PF S	lope Coefficient	-1.18813		PF Power Coefficient		0.82009
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.9
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Sul	osegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	60.0
Vel	nicle Results		·			
Aver	rage Speed, mi/h	60.0		Percent Followers	, %	27.6
Segr	ment Travel Time, minutes	1.00	1.00		, followers/mi/ln	0.9
 Vehi	cle LOS	А				

E - NY-34.xuf

		HCS7 Two-l	Lane	Highway Re	eport	
Pro	ject Information					
Anal	yst	ВН		Date		02/24/2021
Age	ncy	PDE		Analysis Year		2022
Juris	diction	NYSDOT		Time Period Analy	/zed	Proposed
Proj	ect Description	Ditmar Road		Unit		United States Customary
			Segn	nent 1		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	10		Shoulder Width, f	t	0
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	58		Opposing Demand Flow Rate, veh/h		39
Peak	Hour Factor	0.90		Total Trucks, %		5.20
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.03
Int	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed, mi/h		56.4
Spe	ed Slope Coefficient	3.27897		Speed Power Coefficient		0.60962
PF S	lope Coefficient	-1.16300		PF Power Coefficient		0.81900
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.1
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Sul	osegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	T-		-	56.4
Vel	nicle Results	•				
Aver	rage Speed, mi/h	56.4		Percent Followers	, %	10.6
Segr	ment Travel Time, minutes	1.06	1.06		, followers/mi/ln	0.1
 Vehi	cle LOS	А				

HCSTM Two-Lane Version 7.8 F - Ditmar Rd.xuf

		HCS7 Two-La	ane	Highway Re	eport	
Pro	ject Information					
Anal	yst	ВН		Date		02/24/2021
Ager	ncy	PDE		Analysis Year		2022
Juris	diction	NYSDOT		Time Period Analy	zed	Proposed
Proje	ect Description	Conger Rd		Unit		United States Customary
		Se	egn	nent 1		
Vel	nicle Inputs					
Segr	nent Type	Passing Zone		Length, ft		5280
Lane	Width, ft	10		Shoulder Width, f	t	0
Spec	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	3.0
Dei	nand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	2		Opposing Demand Flow Rate, veh/h		1
Peak	Hour Factor	0.90		Total Trucks, %		5.20
Segr	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.00
Inte	ermediate Results					
Segr	nent Vertical Class	1		Free-Flow Speed,	mi/h	56.4
Spee	ed Slope Coefficient	3.22525		Speed Power Coefficient		0.66392
PF SI	ope Coefficient	-1.11545		PF Power Coefficient		0.83331
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.0
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Suk	segment Data					-
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	56.4
Vel	nicle Results					
Aver	age Speed, mi/h	56.4	56.4		, %	0.7
Segr	nent Travel Time, minutes	1.06	1.06		followers/mi/ln	0.0
Vehi	cle LOS	А				
, 0, ,,,						Caracata de 02/24/2021 00:55

HCSTM Two-Lane Version 7.8 G - Conger Rd.xuf Generated: 02/24/2021 09:55:36

	HCS7 T	wo-Lane Hig	hway Report	
Project Information				
Analyst	ВН	Date		02/24/2021
Agency	PDE	Anal	rsis Year	2022
Jurisdiction	NYSDOT	Time	Period Analyzed	Proposed
Project Description	Bell Rd	Unit		United States Customary
		Segment	1	
Vehicle Inputs				
Segment Type	Passing Zone	Leng	:h, ft	5280
Lane Width, ft	9	Shou	lder Width, ft	0
Speed Limit, mi/h	55	Acce	ss Point Density, pts/mi	3.0
Demand and Capacit	У	·		·
Directional Demand Flow Rat	e, veh/h 3	Орр	osing Demand Flow Rate, ve	eh/h 2
Peak Hour Factor	0.90	Total	Trucks, %	5.20
Segment Capacity, veh/h	1700	Dem	and/Capacity (D/C)	0.00
Intermediate Results				
Segment Vertical Class	1	Free	Flow Speed, mi/h	55.8
Speed Slope Coefficient	3.19726	Spee	d Power Coefficient	0.65910
PF Slope Coefficient	-1.12135	PF Po	wer Coefficient	0.83014
In Passing Lane Effective Leng	gth? No	Total	Segment Density, veh/mi/l	n 0.0
%Improved % Followers	0.0	% Im	proved Avg Speed	0.0
Subsegment Data	-			
# Segment Type	Length, ft	Radius, ft	Superelevation	on, % Average Speed, mi/h
1 Tangent	5280	-	-	55.8
Vehicle Results			·	
Average Speed, mi/h	55.8	Perce	nt Followers, %	1.0
Segment Travel Time, minute	s 1.08	Follo	wers Density, followers/mi/	In 0.0
Vehicle LOS	А			

HCSTM Two-Lane Version 7.8 H - Bell Rd.xuf

		HCS7 Two-La	ane	Highway Re	eport	
Pro	ject Information					
Anal	yst	ВН		Date		02/24/2021
Age	ncy	PDE		Analysis Year		2022
Juris	diction	NYSDOT		Time Period Analy	zed	Proposed
Proje	ect Description	Follett Rd		Unit		United States Customary
		S	egn	nent 1		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		5280
Lane	e Width, ft	9		Shoulder Width, ft	t	0
Spee	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	3.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	12		Opposing Demand Flow Rate, veh/h		8
Peak	Hour Factor	0.90		Total Trucks, %		5.20
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.01
Int	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	55.8
Spee	ed Slope Coefficient	3.21071		Speed Power Coefficient		0.64502
PF S	lope Coefficient	-1.13361		PF Power Coefficient		0.82642
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.0
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Sul	osegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	1-		-	55.8
Vel	nicle Results					
Aver	rage Speed, mi/h	55.8	55.8		%	2.9
Segr	ment Travel Time, minutes	1.08		Followers Density,	followers/mi/ln	0.0
Vehi	cle LOS	А				

HCSTM Two-Lane Version 7.8

I - Follett Rd.xuf

Generated: 02/24/2021 09:58:40

		HCS7 Two-La	ane	Highway Re	eport				
Pro	ject Information								
Anal	yst	ВН		Date		02/24/2021			
Age	ncy	PDE		Analysis Year		2022			
Juris	diction	NYSDOT		Time Period Analy	zed	Proposed			
Proje	ect Description	Weatherby Rd		Unit		United States Customary			
		S	egn	nent 1					
Vel	nicle Inputs								
Segr	ment Type	Passing Zone		Length, ft		5280			
Lane	e Width, ft	9		Shoulder Width, f	t	0			
Spee	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	3.0			
De	Demand and Capacity								
Dire	ctional Demand Flow Rate, veh/h	6		Opposing Demand Flow Rate, veh/h		3			
Peak	Hour Factor	0.90		Total Trucks, %		5.20			
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.00			
Int	ermediate Results								
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	55.8			
Spee	ed Slope Coefficient	3.20073		Speed Power Coefficient		0.65542			
PF S	lope Coefficient	-1.12454		PF Power Coefficient		0.82917			
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		0.0			
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0			
Sul	osegment Data								
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	55.8			
Vel	nicle Results								
Aver	rage Speed, mi/h	55.8	55.8		. %	1.5			
Segr	ment Travel Time, minutes	1.08	1.08		followers/mi/ln	0.0			
Vehi	cle LOS	А							
						C			

HCSTM Two-Lane Version 7.8

J - Weatherby Rd.xuf

Generated: 02/24/2021 09:59:28

	ا	HCS7 Two-La	ne	Highway Re	eport	
Project Information						
Analyst	В	Н		Date		02/24/2021
Agency	PI	DE		Analysis Year		2022
Jurisdiction	N	IYSDOT		Time Period Analy	zed	Proposed
Project Description	W	Vhite Rd		Unit		United States Customary
		Se	gn	nent 1		
Vehicle Inputs						
Segment Type	Pa	assing Zone		Length, ft		5280
Lane Width, ft	9			Shoulder Width, ft	t	0
Speed Limit, mi/h	5!	5		Access Point Dens	ity, pts/mi	3.0
Demand and Capacit	у					
Directional Demand Flow Rate	e, veh/h 3			Opposing Demand Flow Rate, veh/h		2
Peak Hour Factor	0.	.90		Total Trucks, %		5.20
Segment Capacity, veh/h	17	700		Demand/Capacity (D/C)		0.00
Intermediate Results						-
Segment Vertical Class	1			Free-Flow Speed,	mi/h	55.8
Speed Slope Coefficient	3.	3.19726		Speed Power Coefficient		0.65910
PF Slope Coefficient	-1	-1.12135		PF Power Coefficient		0.83014
In Passing Lane Effective Leng	th? N	lo		Total Segment Density, veh/mi/ln		0.0
%Improved % Followers	0.	.0		% Improved Avg Speed		0.0
Subsegment Data						
# Segment Type	Le	ength, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	52	280	-		-	55.8
Vehicle Results						
Average Speed, mi/h	5!	55.8		Percent Followers, %		1.0
Segment Travel Time, minutes	1.	1.08		Followers Density, followers/mi/ln		0.0
Vehicle LOS	А			•		
						C

HCSTM Two-Lane Version 7.8

K - White Rd.xuf

Generated: 02/24/2021 10:00:21